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On the motion of a porous sphere in a Stokes
flow parallel to a planar confining boundary
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An analysis is presented of the three-dimensional creeping flow in and around a
porous sphere, modelled as a generalized Brinkman medium, near a smooth plane
where the sphere (i) translates uniformly without rotating in an otherwise quiescent
Newtonian fluid, (ii) rotates uniformly without translating in an otherwise quiescent
Newtonian fluid, and (iii) is fixed in a shear field, which is uniform in the far field and
has a linearly increasing velocity profile with increasing distance from the plane. The
linear superposition of these three flow regimes is also considered for the special case
of the free translational and rotational motion of a neutrally buoyant porous sphere
in a shear field that is uniform in the far field. Exact series solutions to the momentum
equations are derived for the velocity and pressure fields in the Brinkman and Stokes-
flow regions. Coefficients in the series solutions for each flow regime are determined
using recursion relations derived from the continuity equations in the Brinkman and
Stokes-flow regions, from the interfacial boundary conditions on the porous spherical
surface, and from the no-slip condition on the plane. Results are presented in terms of
the drag force on the porous sphere and torque about the sphere centre as a function
of the dimensionless clearance distance between the sphere and the rigid plane for
several values of the dimensionless hydraulic permeability of the Brinkman medium.
The free motion of the neutrally buoyant sphere is calculated by requiring that the
net hydrodynamic drag force and torque acting on the sphere vanish. Results for this
case are presented in terms of the dimensionless translational and rotational speeds of
the porous sphere relative to the far-field shear rate as a function of the dimensionless
clearance distance for several values of the dimensionless hydraulic permeability. The
work is motivated by insights it offers into the behaviour of porous agglomerates, and
by its potential utility in industrial, biological, biophysical, medicinal and environ-
mental applications wherever gas or liquid suspensions of porous agglomerates might
arise.

1. Introduction
The hydrodynamic interactions that arise between rigid solids of revolution in a

Stokes flow near solid boundaries, between rigid solids of revolution in a Stokes
flow near porous media, and in creeping flows inside and around porous bodies in
an unbounded medium, have been the subject of numerous studies over the years
(Weinbaum, Ganatos & Yan 1990). The early studies by Jeffery and coworkers (Jeffrey
1915; Stimson & Jeffery 1926) and later by O’Neill and coworkers (Dean & O’Neill
1963; O’Neill 1964; Goren & O’Neill 1971) used bispherical coordinates to obtain
exact series solutions for Stokes flows induced by the motion or presence of a solid
sphere near planar confining boundaries or other spherical bodies. The work of



76 B. C. Roy and E. R. Damiano

O’Neill and coworkers led to exact series solutions of the fully three-dimensional
Stokes equations for flow induced by a solid sphere near a smooth plane where the
sphere is (i) under pure rotation without translation in an otherwise quiescent fluid
(Dean & O’Neill 1963), (ii) in uniform translation without rotation in an otherwise
quiescent fluid (O’Neill 1964), and (iii) stationary in a shear field, which is uniform
in the far field and has a linearly increasing velocity profile with increasing distance
from the plane (Goren & O’Neill 1971). Since the governing differential equations
and boundary conditions of these three elemental problems are linear, their solutions
can be linearly superposed to provide the solution to the more complicated Stokes
flow arising from the free translational and rotational motion of a neutrally buoyant
solid sphere near a plane wall where the shear field is uniform in the far field. For
this problem, Goldman, Cox & Brenner (1967) imposed the condition that the net
hydrodynamic force and torque about the centre of a neutrally buoyant solid sphere
must vanish, and obtained asymptotic expressions for the translational and rotational
speeds of the sphere as a function of the dimensionless clearance distance between
the sphere and the plane.

All three elemental problems (translation, rotation, and uniform shear), as well
as the linear superposition of these solutions for the neutrally buoyant case, were
generalized by Damiano et al. (2004a) to the fully three-dimensional problem of
the Stokes flow around a solid sphere near a porous planar medium. The porous
medium was modelled as a Brinkman half-space, where asymptotic approximations
of the exact integral solutions were found for the flow in the Brinkman medium,
and the exact infinite series solutions, first obtained by Dean & O’Neill (1963), were
used for the Stokes flow around the sphere. Whereas the degenerate problem of a
planar confining boundary was characterized by a single parameter (the dimensionless
clearance between the solid sphere and the plane), the generalized problem of the
planar porous medium spans a two-dimensional parameter space, which consists of
the dimensionless clearance between the solid sphere and the porous interface, and the
dimensionless Brinkman parameter, a (K/μ)1/2 (where a is the sphere radius and μ/K

is the Darcy permeability of the Brinkman medium), which characterizes the ratio
of permeation-induced viscous drag forces associated with fluid motion through the
pores of the Brinkman medium to viscous drag forces associated with fluid-velocity
gradients within the Brinkman medium.

Brinkman (1947) proposed an equation to model flow through porous media that
contains a Newtonian viscous drag term and a Darcy drag term which together
balance the pressure gradient. The so-called ‘Brinkman equation’ can be regarded
as a particular limit of the more general equations of binary mixture theory, which
derive from the continuum field theory of heterogeneous materials (Truesdell &
Toupin 1960). In particular, when inertial forces are negligible, i.e. in the limit of
vanishing Reynolds number, and in the limit as the solid-volume fraction, φs , of
the mixture vanishes, the equation governing the fluid constituent in the mixture
corresponds to the Brinkman equation provided that the Brinkman medium itself is
in an inertial frame and the reference coordinates are affixed to that frame. In binary
mixture theory, the conservation equations for the fluid constituent of the porous
medium and the conditions on the velocity and stress fields at interfaces between
the porous medium and fluid and solid boundaries are similar in form to those that
arise for a Brinkman medium (Truesdell & Toupin 1960; Saffman 1971; Hou et al.
1989); however additional parameters are needed to characterize such a material and
the deformation of the solid constituent of the mixture becomes a dependent field
variable which is coupled to the motion of the fluid constituent.
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In the present study, we consider the complementary problem to that considered
by Damiano et al. (2004a). Namely, we will detail the three-dimensional flow that
arises in and around a porous sphere, modelled as a generalized Brinkman medium,
that is maintained at a constant distance from a smooth plane and is (i) under
pure rotation without translation in an otherwise quiescent Newtonian fluid, (ii) in
uniform translation without rotation in an otherwise quiescent Newtonian fluid,
and (iii) stationary in a shear field, which is uniform in the far field and has
a linearly increasing velocity profile with increasing distance from the plane. By
virtue of the linearity of these boundary-value problems, we also consider the linear
superposition of these three elemental problems to solve for the free translational
and rotational motion of a neutrally buoyant porous sphere near a plane wall where
the shear field is uniform in the far field. The significant solutions thus obtained
consist of series solutions in terms of Legendre polynomials, which exactly satisfy the
governing momentum equations for the velocity field and Laplace’s equation for the
pressure, in the Stokes-flow region above the plane and around the porous sphere,
and throughout the Brinkman region within the porous sphere. For each of the flow
regimes considered, the no-slip boundary condition is applied on the rigid plane, and
continuity of the velocity and stress-traction vectors is imposed across the interfacial
spherical surface separating the Stokes-flow region outside the porous sphere from
the Brinkman region inside the porous sphere. Twelve recursion relations are derived
to determine the coefficients in the series solutions such that those solutions exactly
satisfy the boundary and interfacial conditions as well as the continuity equations in
both the Stokes-flow and Brinkman regions.

This analysis complements not only the work of Damiano et al. (2004a), but also
the work of Davis (2001), which considered the two-dimensional axisymmetric flow
induced by the motion of a porous sphere translating perpendicular to a rigid
plane, and the work of Feng, Ganatos & Weinbaum (1998), which considered
the motion of a solid sphere through a Brinkman medium near planar confining
boundaries. Motivation for this work lies in understanding the behaviour of porous
agglomerates, which occur as gas or liquid suspensions in industrial, biological,
biophysical, medicinal and environmental applications. Agglomerates can be viewed
as continuum bodies, permeable to the surrounding medium, which could be gas
or liquid (Vainshtein, Shapiro & Gutfinger 2004). The hydrodynamic interactions
detailed here, between a porous sphere and a planar confining boundary, help extend
our understanding of important processes such as coagulation rate (Saffman & Turner
1956), particle settling (Kim & Stolzenbach 2004), and the effective viscosity of porous
agglomerates in solution (Vainshtein & Shapiro 2006) near planar substrates.

2. General formulation
Consider the Stokes flow, parallel to a planar confining boundary, P , of a fluid

having constant viscosity, μ, that is induced or altered by the motion or presence of
a porous sphere, itself modelled as a generalized Brinkman medium occupying the
spherical volume, S, bounded by the closed surface, ∂S, and having constant viscosity,
μ, and constant hydraulic resistivity, K (see figure 1). The mass and momentum
conservation equations for the solenoidal flow fields throughout the Stokes-flow and
spherical Brinkman regions are given respectively by

−μ∇×∇×ṽ∗ = ∇p̃∗, ∇·ṽ∗ = 0, ∀ x∗ /∈ S, (2.1)

−μ∇×∇× v∗ − K
(
v∗ − v∗s

)
= ∇p∗, ∇·v∗ = 0, ∀ x∗ ∈ S, (2.2)
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Figure 1. Schematic depicting the translational and rotational motion of a porous sphere,
occupying a region S bounded by ∂S, in a Stokes flow bounded by a planar confining
boundary, P .

where ṽ∗ is the dimensional fluid velocity vector in the Stokes-flow region, v∗ is the
dimensional fluid velocity vector in the spherical Brinkman region, bounded by ∂S,
v∗s is the dimensional velocity associated with the local rigid-body motion of ‘solid
constituent’ of the porous sphere, and p̃∗ and p∗ denote the dimensional pressure
fields in the Stokes-flow and Brinkman regions, respectively (variables that carry
a tilde are associated with the Stokes-flow region, variables that carry an asterisk
are dimensional). Taking the divergence of the momentum equations and using the
fact that both velocity fields are solenoidal, it follows that ∇·∇p̃∗ = ∇2p̃∗ = 0 and
∇·∇p∗ = ∇2p∗ = 0 throughout their respective fields.

More precisely, (2.2) corresponds to the momentum equation of the fluid constituent
associated with a binary mixture in the limit of vanishing Reynolds number and
vanishing solid-volume fraction, φs , where it is understood that the solid constituent
is non-deformable and undergoes rigid-body motion only. Owing to this rigid-body
motion, which is embodied in v∗s , we regard (2.2) as a generalized form of the
Brinkman equation.

3. Brinkman equations in cylindrical coordinates
Consider the Cartesian coordinate system, (x∗, y∗, z∗), as shown in figure 1. Let

the rigid planar confining boundary, P , herein referred to as the reference plane, be
located at z∗ = 0. The dimensional fluid velocity vector in the spherical Brinkman
region is given in Cartesian coordinates (x∗, y∗, z∗) by v∗ = v∗

xex + v∗
yey + v∗

z ez, where
x∗ = x∗ex + y∗ey + z∗ez. In cylindrical coordinates (r∗, θ, z∗), where x∗ = r∗ cos θ ,
y∗ = r∗ sin θ , and v∗ = v∗

r er + v∗
θ eθ + v∗

z ez, the governing conservation equations in the
spherical Brinkman region, given by (2.2), take the form

∇2v∗
r − v∗

r

r∗2
− 2

r∗2

∂v∗
θ

∂θ
− K

μ

(
v∗

r − v∗s
r

)
=

1

μ

∂p∗

∂r∗ , (3.1)

∇2v∗
θ − v∗

θ

r∗2
+

2

r∗2

∂v∗
r

∂θ
− K

μ

(
v∗

θ − v∗s
θ

)
=

1

μ r∗
∂p∗

∂θ
, (3.2)

∇2v∗
z − K

μ

(
v∗

z − v∗s
z

)
=

1

μ

∂p∗

∂z∗ , (3.3)
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∂v∗
r

∂r∗ +
v∗

r

r∗ +
1

r∗
∂v∗

θ

∂θ
+

∂v∗
z

∂z∗ = 0, (3.4)

where the scalar Laplacian is defined as

∇2 =
∂2

∂r∗2
+

1

r∗
∂

∂r∗ +
1

r∗2

∂2

∂θ2
+

∂2

∂z∗2
.

The velocity vector, v∗s = v∗s
r er + v∗s

θ eθ + v∗s
z ez, for the three different flow regimes

associated with the sphere motions considered here is defined as follows:
(a) when the sphere is stationary near P in a flow that approaches a uniform shear

field, of strength γ̇ , in the far field, v∗s is given in Cartesian coordinates by

v∗s(x∗) = 0, ∀ x∗ ∈ S

and in cylindrical coordinates by

v∗s(r∗, θ, z∗) = 0, ∀ (r∗, θ, z∗) ∈ S; (3.5)

(b) when the sphere undergoes a purely steady translational motion, parallel to P

with constant speed U in the positive x∗-direction through an otherwise quiescent
fluid, v∗s is given in Cartesian coordinates by

v∗s(x∗) = U ex, ∀ x∗ ∈ S

and in cylindrical coordinates by

v∗s(r∗, θ, z∗) = U (cos θ er − sin θ eθ ) , ∀ (r∗, θ, z∗) ∈ S; (3.6)

(c) when the sphere undergoes a purely steady rotational motion about an axis
parallel to P with constant speed Ω in the positive y∗-direction through an otherwise
quiescent fluid, v∗s is given by

v∗s(x∗) = Ω ey× r∗s, ∀ x∗ ∈ S,

where r∗s is the position vector originating from the sphere centre to any point in S.
In Cartesian coordinates, this takes the form

v∗s = Ω
(
(z∗ − d) ex − x∗ ez

)
, ∀ (x∗, y∗, z∗) ∈ S,

where d is the distance from the plane to the centre of the sphere located at x∗ = d ez.
In cylindrical coordinates this takes the form

v∗s(r∗, θ, z∗) = Ω
(
(z∗ − d)(cos θ er − sin θ eθ ) − r∗ cos θ ez

)
, ∀ (r∗, θ, z∗) ∈ S. (3.7)

These three flow regimes are collectively represented by the single expression for v∗s

given by

v∗s(r∗, θ, z∗) = V ((ct +cr (z
∗ −d)) cos θer − (ct +cr (z

∗ −d)) sin θeθ −crr
∗ cos θez), (3.8)

where, for purely translational motion of the sphere in an otherwise quiescent fluid,
ct = 1, cr = 0 and V = U , for purely rotational motion of the sphere in an otherwise
quiescent fluid, ct = 0, cr = 1 and V = c Ω , and for a stationary sphere where the
flow approaches a uniform shear field, of strength γ̇ , in the far field, ct = cr = 0 and
V = c γ̇ , where c is a characteristic length scale defined below.

Following the approach of Dean & O’Neill (1963), the θ-dependence of equations
(3.1)–(3.4) can be eliminated from the problem and useful decoupling occurs if p∗

and the cylindrical components of v∗ are written as

p∗ =
μV

c
Q(r, z) cos θ, v∗

r = 1
2
V (rQ(r, z) + U0(r, z) + U2(r, z)) cos θ, (3.9)



80 B. C. Roy and E. R. Damiano

v∗
θ = 1

2
V (U2(r, z) − U0(r, z)) sin θ, v∗

z = 1
2
V (zQ(r, z) + 2w(r, z)) cos θ, (3.10)

where V is the characteristic velocity defined for each of the three flow regimes
described above, v = v∗/V , p = cp∗/(μV ), r = r∗/c, and z = z∗/c. For a sphere of
radius a in the Stokes-flow region, the characteristic length scale c = (d2 − a2)1/2.
It is convenient to choose c as our characteristic length scale since this will render
the transformation we introduce below, between dimensionless cylindrical coordinates
and spherical coordinates, free of parameters. This, in turn, will simplify the form
of many of the expressions that we will derive that will use the spherical coordinate
system.

When (3.8) and the decoupling relations, given by (3.9) and (3.10), are substituted
into the conservation equations, the fully three-dimensional problem reduces to one
that is dependent only on r and z. In particular, (3.1)–(3.4) and Laplace’s equation
for the pressure, p∗, are satisfied throughout the spherical Brinkman region if

L2
1 Q = 0, L2

1 w − ε−2
(
w + 1

2
zQ + crr

)
= 0, (3.11)

L2
0 U0 − ε−2

(
U0 + 1

2
rQ − 2ct − 2cr (z − d/c)

)
= 0, L2

2 U2 − ε−2
(
U2 + 1

2
rQ

)
= 0,

(3.12)(
3 + r

∂

∂r
+ z

∂

∂z

)
Q +

∂U0

∂r
+

(
∂

∂r
+

2

r

)
U2 + 2

∂w

∂z
= 0, (3.13)

where

L2
m =

∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2
.

In (3.11) and (3.12), the dimensionless hydraulic permeability of the Brinkman
medium, ε2 = μ/(Kc2), characterizes the ratio of viscous drag forces associated
with fluid-velocity gradients in the spherical Brinkman region to permeation-induced
viscous drag forces associated with fluid motion relative to the ‘solid constituent’ of
the porous sphere.

4. Cylindrical components of the Brinkman equations in spherical coordinates
Since the Brinkman medium has a spherical geometry, it is convenient to express the

cylindrical components of the velocity field in S in terms of the spherical coordinates
(�, θ, φ), which are related to the cylindrical coordinates (r, θ, z) according to

r = � sinφ, z = � cos φ + d/c (0 � � � a/c, 0 � φ � π), (4.1)

where the origin of the spherical coordinate system is located at the centre of the
sphere, i.e. at z = d/c.

Using the chain rule of differentiation to express r- and z-derivatives and the
differential operator L2

m in terms of the spherical coordinates, � and φ, the conservation
equations governing the flow field throughout the spherical Brinkman region, given
by (3.11)–(3.13), are satisfied if

L2
1 Q = 0, L2

1 w =
1

ε2

(
w + 1

2
(� cosφ + d/c) Q + cr� sinφ

)
, (4.2)

L2
0 U0 =

1

ε2

(
U0 + 1

2
� sinφ Q − 2 (ct + cr� cos φ)

)
, L2

2 U2 =
1

ε2

(
U2 + 1

2
� sinφ Q

)
,

(4.3)
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(
3 + �

∂

∂�

)
Q +

2 U2

� sinφ
+

(
sinφ

∂

∂�
+

cos φ

�

∂

∂φ

)
(U0 + U2)

+

(
cos φ

∂

∂�
− sin φ

�

∂

∂φ

)(
d

c
Q + 2w

)
= 0, (4.4)

where

L2
m =

∂2

∂�2
+

2

�

∂

∂�
+

cot φ

�2

∂

∂φ
+

1

�2

∂2

∂φ2
− m2

�2 sin2 φ
. (4.5)

5. Cylindrical components of the Stokes equations in bispherical coordinates
The cylindrical-coordinate representation of the equations associated with the

Stokes-flow region are given by (3.1)–(3.4) and (3.11)–(3.13), when K and ε−2 vanish,
and tildes are added to all dependent variables. However, owing to the presence of
the sphere in the Stokes-flow region, cylindrical coordinates are not an ideal choice.
On the other hand, since the reference plane, P , is a degenerate sphere in the limit of
infinite radius of curvature, it is convenient to express the cylindrical components of
the velocity field in the Stokes-flow region in terms of bispherical coordinates (η, θ, ξ ),
which are related to the cylindrical coordinates (r, θ, z) according to

r =
sin η

cosh ξ − cos η
, z =

sinh ξ

cosh ξ − cos η
(0 � η � π, 0 � ξ � α). (5.1)

The coordinate surface ξ = α > 0 corresponds to the locus of points that lie
on the spherical interfacial surface, ∂S, which is the only coordinate surface that
the spherical and bispherical coordinate systems share, while the coordinate surface
ξ = z = 0 corresponds to the locus of points that lie on the reference plane, P ,
which is the only coordinate surface that the cylindrical and bispherical coordinate
systems share. Using the chain rule of differentiation to express r- and z-derivatives
and the differential operator L2

m in terms of the bispherical coordinates, η and ξ , the
conservations equations governing the flow field throughout the Stokes-flow region,
given by (3.11)–(3.13), with tildes added to all dependent variables and ε−2 = 0, are
satisfied if

L2
1 Q̃ = L2

1 w̃ = L2
0 Ũ0 = L2

2 Ũ2 = 0, (5.2)

3 Q̃ + 2 cosec η (cosh ξ − cos η) Ũ2 − cos η sinh ξ
∂Q̃

∂ξ
− sin η cosh ξ

∂Q̃

∂η

−(1 − cos η cosh ξ )

(
∂Ũ0

∂η
+

∂Ũ2

∂η
− 2

∂w̃

∂ξ

)
− sin η sinh ξ

(
∂Ũ0

∂ξ
+

∂Ũ2

∂ξ
+ 2

∂w̃

∂η

)
= 0,

(5.3)

where

L2
m =

∂2

∂η2
+

∂2

∂ξ 2
+

1 − cos η cosh ξ

sin η (cos η − cosh ξ )

∂

∂η
+

sinh ξ

cos η − cosh ξ

∂

∂ξ
− m2

sin2 η
. (5.4)

We can generalize, slightly, the decoupling relations introduced in (3.9) and (3.10)
in order to collectively account for all three flow regimes to be considered here. In
particular, the Stokes-flow equations decouple if p̃∗ and the cylindrical components
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of ṽ∗ are written as

p̃∗ =
μV

c
Q̃(r, z) cos θ, ṽ∗

r = 1
2
V

(
rQ̃(r, z) + Ũ0(r, z) + Ũ2(r, z) + csz

)
cos θ, (5.5)

ṽ∗
θ = 1

2
V

(
Ũ2(r, z) − Ũ0(r, z) − csz

)
sin θ, ṽ∗

z = 1
2
V

(
zQ̃(r, z) + 2w̃(r, z)

)
cos θ, (5.6)

where ṽ∗ and p̃∗ are non-dimensionalized in the same manner as v∗ and p∗.
If the Stokes flow is induced by the either translational or rotational motion of

the porous sphere, then V = U or V = c Ω , respectively, and cs = 0. However, for
a stationary sphere in a flow that approaches a uniform shear field in the far field,
V = c γ̇ , and cs = 2. Since adding to ṽ∗

r and subtracting from ṽ∗
θ the same linear

function of z does not change the left-hand sides of (3.1) and (3.2) when K = 0,
the differential equations governing Q̃, w̃, Ũ0 and Ũ2, are identical for all three flow
regimes considered here and are still given by (5.2)–(5.4).

6. Exact solution of the governing equations
Below we provide general forms of the exact solutions to (4.2), (4.3) and (5.2) and

the conditions under which those solutions can be made to satisfy the continuity
equations given by (4.4) and (5.3).

6.1. Solution in the spherical Brinkman region

On solving equations (4.2) and (4.3) by the method of separation of variables, we find
that, to within the arbitrary constants an, cn, en and gn, the exact solution for flow in
the spherical Brinkman region is given by

Q(�, φ) =

∞∑
n=1

cn �n sinφ P ′
n(cosφ), (6.1)

w(�, φ) = −cr � sinφ − 1
2
(� cosφ + d/c) Q − ε2

(
cos φ

∂Q

∂�
− sinφ

�

∂Q

∂φ

)

+

∞∑
n=1

an

In+1/2 (�/ε)

�1/2
sinφ P ′

n(cosφ), (6.2)

U0(�, φ) = 2 ct + 2 cr � cos φ − 1
2
� sinφ Q − ε2

(
Q

� sinφ
+ sin φ

∂Q

∂�
+

cos φ

�

∂Q

∂φ

)

+

∞∑
n=0

en

In+1/2 (�/ε)

�1/2
Pn(cosφ), (6.3)

U2(�, φ) = − 1
2
� sinφ Q + ε2

(
Q

� sinφ
− sinφ

∂Q

∂�
− cos φ

�

∂Q

∂φ

)

+

∞∑
n=2

gn

In+1/2 (�/ε)

�1/2
sin2 φ P ′′

n (cosφ), (6.4)

where In+1/2 is the modified Bessel function of the first kind, Pn are the Legendre
polynomials of the first kind, and the primes denote differentiation with respect
to cosφ. Note that �−(n+1), corresponding to the second linearly independent
complementary solution associated with Q, and Kn+1/2 (�/ε)/�1/2, corresponding to
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the second linearly independent complementary solution associated with w, U0 and
U2, grow without bound in the spherical Brinkman region as � → 0, and are therefore
not admissible. On the other hand, it can be shown using L’Hopital’s rule that
In+1/2 (�/ε)/�1/2, the admissible complementary solution associated with w, U0 and
U2, is bounded in the spherical Brinkman region as � → 0.

Substituting (6.1)–(6.4) into the continuity equation, given by (4.4), and using the
recursion relations for the Legendre polynomials, one obtains a solenoidal velocity
field throughout the spherical Brinkman region if

(2n + 3) (en−1 + 2(n − 1)an−1 − (n − 1)(n − 2)gn−1)

− (2n − 1) (en+1 + 2(n + 2)an+1 − (n + 2)(n + 3)gn+1) = 0, n = 1, 2, . . . . (6.5)

Note that this recursion relation satisfies the continuity equation in the spherical
Brinkman region irrespective of the motion of the sphere being translational,
rotational, or stationary.

6.2. Solution in the Stokes-flow region

Following Dean & O’Neill (1963), the series solutions that exactly satisfy (5.2) are
given by

Q̃(η, ξ ) = sin η (cosh ξ − cos η)1/2

∞∑
n=1

(
c̃n cosh

(
n + 1

2

)
ξ + d̃n sinh

(
n + 1

2

)
ξ
)
P ′

n(cos η),

(6.6)

w̃(η, ξ ) = sin η (cosh ξ − cos η)1/2

∞∑
n=1

(
ãn cosh

(
n + 1

2

)
ξ + b̃n sinh

(
n + 1

2

)
ξ
)
P ′

n(cos η),

(6.7)

Ũ0(η, ξ ) = (cosh ξ − cos η)1/2

∞∑
n=0

(
ẽn cosh

(
n + 1

2

)
ξ + f̃n sinh

(
n + 1

2

)
ξ
)
Pn(cos η),

(6.8)

Ũ2(η, ξ ) = sin2 η (cosh ξ −cos η)1/2

∞∑
n=2

(
g̃n cosh

(
n+ 1

2

)
ξ + h̃n sinh

(
n + 1

2

)
ξ
)
P ′′

n (cos η),

(6.9)
where the primes denote differentiation with respect to cos η.

Substituting (6.6)–(6.9) into the continuity equation, given by (5.3), and using the
recursion relations for the Legendre polynomials, one obtains a solenoidal velocity
field throughout the Stokes-flow region if

5
2
d̃n − 1

2
((n − 1)d̃n−1 − (n + 2)d̃n+1) − 1

2
(f̃n−1 − 2f̃n + f̃n+1)

+1
2
((n − 2)(n − 1)h̃n−1 − 2(n − 1)(n + 2)h̃n + (n + 2)(n + 3)h̃n+1)

−(n − 1)ãn−1 + (2n + 1)ãn − (n + 2)ãn+1 = 0, n = 1, 2, . . . (6.10)

and

5
2
c̃n − 1

2
((n − 1)c̃n−1 − (n + 2)c̃n+1) − 1

2
(ẽn−1 − 2ẽn + ẽn+1)

+1
2
((n − 2)(n − 1)g̃n−1 − 2(n − 1)(n + 2)g̃n + (n + 2)(n + 3)g̃n+1)

−(n − 1)b̃n−1 + (2n + 1)b̃n − (n + 2)b̃n+1 = 0, n = 1, 2, . . . . (6.11)
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7. Boundary conditions on the reference plane
The Stokes-flow region is bounded by the reference plane, P , where the no-slip

boundary condition requires that ṽ(x) = 0, ∀ x ∈ P . In cylindrical coordinates, this
boundary condition takes the form

ṽr = ṽθ = ṽz = 0, ∀ (r, θ) ∈ z = 0. (7.1)

Using the decoupling relations, given by (5.5) and (5.6), the no-slip boundary condition
is satisfied if

w̃(r, 0) = Ũ0(r, 0) + 1
2
rQ̃(r, 0) = Ũ2(r, 0) + 1

2
rQ̃(r, 0) = 0. (7.2)

In bispherical coordinates (η, ξ ), where the reference plane, P , corresponds to the
coordinate surface ξ = 0, these conditions are given by

w̃(η, 0) = Ũ0(η, 0) + 1
2

sin η

1 − cos η
Q̃(η, 0) = Ũ2(η, 0) + 1

2

sin η

1 − cos η
Q̃(η, 0) = 0. (7.3)

Substituting the series solutions, given by (6.6)–(6.9), into (7.3), and making use of
the recursion relations for the Legendre polynomials, the no-slip boundary condition
on the reference plane, P , is satisfied if

(n + 1)(n + 2)

2(2n + 3)
c̃n+1− n(n − 1)

2(2n − 1)
c̃n−1− n

2n − 1
ẽn−1+ẽn− n + 1

2n + 3
ẽn+1 = 0, n = 0, 1, . . . ,

(7.4)

ãn = 0, n = 1, 2, . . . , (7.5)

1

2(2n − 1)
c̃n−1 − 1

2(2n + 3)
c̃n+1 − n − 2

2n − 1
g̃n−1 + g̃n − n + 3

2n + 3
g̃n+1 = 0, n = 2, 3, . . . .

(7.6)
In the light of (7.5), the first recursion relation derived from the continuity equation,

given by (6.10), thus reduces to

5
2
d̃n − 1

2
((n − 1)d̃n−1 − (n + 2)d̃n+1) − 1

2
(f̃n−1 − 2f̃n + f̃n+1)

+1
2
((n − 2)(n − 1)h̃n−1 − 2(n − 1)(n + 2)h̃n + (n + 2)(n + 3)h̃n+1) = 0,

n = 1, 2, . . . . (7.7)

8. Interfacial velocity and stress conditions
We require that the velocity vector and Cauchy stress tensor be continuous across

the interfacial surface, ∂S, separating the spherical Brinkman region and the Stokes-
flow region. In particular, if n is an outwardly facing unit vector that is locally
orthogonal to the spherical interface, ∂S, then the stress traction vector acting on ∂S

is given by σ ∗ · n, where σ ∗ is the dimensional Cauchy stress tensor. The interfacial
velocity and stress conditions are then given by

v∗(x∗) = ṽ∗(x∗), σ ∗(x∗) · n = −σ̃ ∗(x∗) · ñ, ∀ x∗ ∈ ∂S, (8.1a,b)

where n = e� = sinφ er + cosφ ez and ñ = −e� are, respectively, the outwardly
facing unit normal vectors to the spherical Brinkman and Stokes-flow regions on ∂S.
Equation (8.1b) asserts that the stress-traction vectors associated with the Stokes-flow
and spherical Brinkman regions acting at any point on ∂S are equal in magnitude
and direction but of opposite sense. These interfacial conditions are consistent with
those derived by Hou et al. (1989) in the limit as the solid volume fraction vanishes.
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Using the transformations between cylindrical and spherical coordinates and
between cylindrical and bispherical, given respectively by (4.1) and (5.1), it can
be shown that the interfacial velocity and stress-traction conditions given by (8.1)
provide the following six interfacial conditions on the spherical porous surface, ∂S, in
terms of the spherical coordinate, φ:

Q(cosechα, φ) = Q̃(η (cosechα, φ), α), (8.2)

w(cosechα, φ) = w̃(η (cosechα, φ), α), (8.3)

U0(cosechα, φ) = Ũ0(η (cosechα, φ), α) + cs

(
cosφ

sinhα
+ cothα

)
, (8.4)

U2(cosechα, φ) = Ũ2(η (cosechα, φ), α), (8.5)

sinφ

sinhα

∂Q

∂�

∣∣∣∣
�=cosechα

+ 2
∂U0

∂�

∣∣∣∣
�=cosechα

=

(
coshα cos φ + 1

coshα + cosφ
− coshα

)(
sinφ

sinhα

∂Q̃

∂ξ

∣∣∣∣
ξ=α

+ 2
∂Ũ0

∂ξ

∣∣∣∣
ξ=α

)
, (8.6)

sinφ

sinhα

∂Q

∂�

∣∣∣∣
�=cosechα

+ 2
∂U2

∂�

∣∣∣∣
�=cosech α

=

(
coshα cos φ + 1

coshα + cos φ
− coshα

)(
sinφ

sinhα

∂Q̃

∂ξ

∣∣∣∣
ξ=α

+ 2
∂Ũ2

∂ξ

∣∣∣∣
ξ=α

)
+ 2 cs cos φ, (8.7)

where the quantities

sin(η (cosechα, φ)) =
sinφ sinhα

coshα + cosφ
and cos(η (cosechα, φ)) =

coshα cos φ + 1

coshα + cosφ

(8.8)

are used to replace sin η and cos η in the right-hand sides of (8.2)–(8.7) after making
the substitution for the series solutions for Q̃, w̃, Ũ0 and Ũ2, given by (6.6)–(6.9).
Refer to Appendix A for details on obtaining (8.2)–(8.7).

Upon making these substitutions, (8.2)–(8.7) express the six interfacial conditions on
∂S in terms that depend only on the spherical coordinate, φ, and the single parameter,
α. In the light of the solutions for the flow in the spherical Brinkman and Stokes-flow
regions, given, respectively, by (6.1)–(6.4) and (6.6)–(6.9), it follows that arguments
of the respective Legendre polynomials associated with those solutions are cos φ,
on the left-hand sides of (8.2)–(8.7) and cos(η (cosechα, φ)), given by (A27a,b), on
the right-hand sides of (8.2)–(8.7). While the eigenfunctions Pm(cosφ) (or P ′

m(cosφ)
or P ′′

m(cosφ)) are mutually orthogonal to Pn(cosφ) (or P ′
n(cosφ) or P ′′

n (cosφ)) on
the left-hand sides of (8.2)–(8.7), they are not orthogonal to the eigenfunctions
Pn(cos(η (cosechα, φ))) (or P ′

m(cos(η (cosechα, φ))) or P ′′
m(cos(η (cosechα, φ)))) on the

right-hand sides of (8.2)–(8.7). By forming the inner product of (8.2)–(8.7) with
Pm(cos φ) (or their derivatives with respect to cos φ), the infinite series on the left-
hand sides of each of these equations will each reduce to a single term corresponding
to the mth term in each series. On the other hand, the infinite series on the right-
hand sides of each of these equations will not collapse but rather will transform
into infinite series of inner products between Pm(cos φ) and Pn(cos(η (cosechα, φ)))
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(or their derivatives relative to their respective arguments), which themselves are
independent of φ and depend parametrically only on α.

If the series solutions, given by (6.6)–(6.9), are truncated at N terms, then forming
these inner products with each of the six interfacial conditions given above provides
a system of 6N linear equations that involves recursive expressions on the left-hand
side of each equation in terms of some combination of the unknown coefficients an,
cn, en and gn and infinite series of inner products multiplying factors involving some
combination of the first N unknown coefficients ãn, b̃n, c̃n, d̃n, ẽn, f̃n, g̃n and h̃n. These
six recursion relations are given in Appendix B.

It should be noted that the interfacial conditions described in this section could
also be recast in bispherical coordinates. The results described in the subsequent
sections would be identical; however the subsequent 6N linear equations would take
a different form. In particular, the linear equations would involve more difficult inner
products to evaluate, and would therefore be more computationally cumbersome and
time consuming. It is for this reason that in the final analysis, the calculations to
determine the coefficients were carried out in terms of spherical rather than bispherical
coordinates.

9. Drag force on the sphere and torque about the sphere centre
The hydrodynamic drag force, F∗ = (F ∗

x , F ∗
y , F ∗

z ), exerted on the sphere and torque,

T ∗ = (T ∗
x , T ∗

y , T ∗
z ), about the sphere centre are defined by the following integral

expressions:

F∗ ≡
∫

∂S

σ̃ ∗(x∗) · e� dA∗ and T ∗ ≡
∫

∂S

a e�×
(
σ̃ ∗(x∗) · e�

)
dA∗.

The Cartesian components of these integrals are given, respectively, by

F ∗
x = 1

2
π μ V c

∫ 1

−1

(
Q̃

∂r

∂ξ
− r

∂Q̃

∂ξ
− 2

∂Ũ0

∂ξ

)
ξ=α

dν, F ∗
y = F ∗

z = 0 (9.1)

and

T ∗
y = −π μ V c cosechα

∫ 1

−1

(
∂r

∂ξ

∂

∂ξ

(
1
2
zQ̃ + w̃

)
− ∂z

∂ξ

∂

∂ξ

(
1
2
rQ̃ + Ũ0

))
ξ=α

dν,

T ∗
x = T ∗

z = 0, (9.2)

where ν = cos η (Dean & O’Neill 1963). Using the exact series solutions, Dean &
O’Neill (1963) and O’Neill (1964) analytically evaluated (9.1) and (9.2) for the cases
of pure rotational motion (V = c Ω) and pure translational motion (V = U ) of a
solid sphere in an otherwise quiescent fluid near a planar confining boundary. The
dimensionless form of the exact series solutions corresponding to (9.1) and (9.2) are
given, respectively, by

2−1/2 F i
x =

βi sinhα

6 H (εa)

∞∑
n=1

(
n (n + 1) d̃n + f̃n−1

)
, Fy = Fz = 0, (9.3)

and

21/2 T i
y =

δi sinh2α

4 H (εa)

∞∑
n=1

(
2n (n + 1) b̃n − (2n + 1) (ẽn−1 + f̃n−1)

+ cothα (n (n + 1) (c̃n + d̃n) + (ẽn−1 + f̃n−1)
)
, Tx = Tz = 0, (9.4)
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for i = t, r, s where βt = δt = 1, βr = δr = − sinhα, βs = − tanhα, and δs = −2 sinhα,
and the superscripts t , r , and s correspond, respectively, to pure translation, pure
rotation, and uniform shear. In (9.3) and (9.4), the quantity H (εa) is defined as follows:

H (εa) =
2 (1 − εa tanh(1/εa))

2 + 3 ε2
a (1 − εa tanh(1/εa))

(9.5)

where ε2
a = (c/a)2ε2. Because c varies with d/a, so too does the dimensionless

permeability, ε2, if μ and K are held constant. It is therefore more convenient to
express results in terms of ε2

a , the dimensionless permeability based on sphere radius,
a. In (9.3) and (9.4) the dimensionless force and torque components are defined
relative to their dimensional counterparts according to

F r
x =

F ∗r
x

6πμΩa2H (εa)
, F t

x =
F ∗t

x

6πμUaH (εa)
, F s

x =
F ∗s

x

6πμγ̇ adH (εa)

T r
y =

T ∗r
y

8πμΩa3H (εa)
, T t

y =
T ∗t

y

8πμUa2H (εa)
, T s

y =
T ∗s

y

4πμγ̇ a3H (εa)
.

For a characteristic velocity, V , the terms in the denominator of the above six expres-
sions for the dimensionless force and torque are the dimensional force, 6πμV aH (εa),
and torque, 8πμV a2H (εa), about the sphere centre, experienced by a porous sphere
in an unbounded fluid medium that is otherwise at rest (Debye & Bueche 1948).

10. Free motion of a neutrally buoyant sphere
In the case of a neutrally buoyant porous sphere in a uniform shear field bounded

by a planar confining boundary, Ω and U cannot be specified independently. In order
to obtain the rotational and translational speeds associated with the free motion of
a neutrally buoyant sphere in a Stokes flow that decays to a uniform shear field in
the far field, the sum of the externally applied viscous drag forces on the sphere, and
the sum of the external torques about the sphere centre must vanish. Goldman et al.
(1967) showed that for a neutrally buoyant sphere translating in the x-direction and
rotating about the y-axis, these conditions can be satisfied simultaneously for Ω and
U if we require that

Ω
1
2
γ̇

=
2(d/a)F s

x T t
y − F t

xT
s
y

F t
xT

r
y − F r

x T t
y

,
U

dγ̇
=

1
2
(a/d)F r

x T s
y − F s

x T r
y

F t
xT

r
y − F r

x T t
y

. (10.1)

Thus the free motion of a neutrally buoyant porous sphere rotating and translating
in a uniform shear field bounded by a rigid plane is fully characterized by Ω and
U given by (10.1). Determination of these two quantities not only provides the free
motion of a neutrally buoyant porous sphere, but also leads to the appropriate scaling
of the dimensionless velocity and pressure fields associated with the three elemental
problems we have considered such that linear superposition of the scaled solutions for
a given value of γ̇ provides the velocity and pressure fields for the neutrally buoyant
case as well.

11. Results
The flow at a particular point in the two-dimensional parameter space (α, ε) for each

of the three cases considered is uniquely determined by the eight sets of coefficients,
{ãn, b̃n, c̃n, d̃n, ẽn−1, f̃n−1, g̃n+1, h̃n+1} for n = 1, 2, . . . in the Stokes-flow region and the
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four sets of coefficients, {an, cn, en−1, gn+1} for n = 1, 2, . . . in the spherical Brinkman
region. In order to make this determination, we must first truncate the infinite series
solutions for Q̃, W̃ , Ũ0 and Ũ2 in the Stokes-flow region and for Q, W , U0 and U2

in the spherical Brinkman region, such as to retain only the leading N terms in each
series. The 12N coefficients are then found that uniquely satisfy the 12N system of
linear equations derived from the 3N recursion relations obtained from the no-slip
boundary condition on the reference plane, P , given by (7.4)–(7.6), the 2N recursion
relations derived from the continuity equation in the Stokes-flow region, given by
(6.11) and (7.7), the N recursion relations derived from the continuity equation for
the spherical Brinkman region, given by (6.5), and the 6N recursion relations (see
Appendix B) obtained from the six interfacial boundary conditions on the spherical
interfacial surface, ∂S, given by (B1)–(B6).

Since all of the series solutions are convergent, accuracy increased with increasing
N . As expected, in order to achieve a given accuracy, a greater number of terms
in the series solutions had to be retained for small values of α (corresponding to
small clearances between the sphere and the reference plane, P ) than for large values.
However, as N increased, the determinant of the 12N × 12N matrix associated with
the 12N system of linear equations decreased. Using traditional numerical methods,
the number of terms that could be retained in the series solutions was then limited
by machine precision since increasing N above a certain threshold resulted in an ill-
conditioned matrix as far as the precision of the calculations was concerned. Matrix
inversion then resulted in the accumulation of significant numerical errors in the
12N coefficients. To obviate this limitation, all calculations were carried out using
multiple precision. Furthermore, when assembling the 12N × 12N matrix, all matrix
elements were left in symbolic form or as rational fractions whenever possible, with
conversion to their floating-point approximations being left as a final step before
matrix inversion. When computing the series solutions for all of the results presented
here, we set N = 20 and carried 50 digits of precision. Using these settings, the no-
slip condition along the reference plane, P , the continuity equations throughout the
Stokes-flow and spherical Brinkman regions, and the interfacial boundary conditions
on the spherical interfacial surface, ∂S, were satisfied with an accuracy that exceeded
machine precision. Because of the need for multiple-precision calculations and for
symbolic manipulation of the 12N system of linear equations, all computations were
performed using a symbolic algebra package (Mathematica, Wolfram Research, Inc.)
on a MacBook Pro (Apple, Inc.).

It was noted, not surprisingly, that for a given point in the parameter space (α, ε),
solutions for the case of uniform shear required retention of a greater number of
terms to achieve a given accuracy than did solutions for the cases of pure translation
and pure rotation. When calculating the drag force and torque on the porous sphere,
we did not compute the coefficients for the case of uniform shear at each of the
points in the parameter space considered since this would have required the retention
of many more terms in the series solutions than were necessary in the other two cases
if comparable accuracy was to be obtained. Instead, all of the information required
to compute drag force and torque for the case of uniform shear is obtainable from
the coefficients associated with the other two cases by invoking a quadrature method
first conceived by Brenner (1964) and later implemented by Goldman (1966). There
it was shown, through consideration of the stress-traction vector on the solid sphere
surface, that for the case of uniform shear, the drag force on a solid sphere and
the torque about the sphere centre could be determined from the coefficients of the
pure translational and pure rotational problems, respectively. The same arguments
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Figure 2. Variation, with respect to d/a, in the magnitudes of the dimensionless drag force
on a porous sphere (black curves, left axis) and torque on a porous sphere about its centre
(grey curves, right axis) if the sphere, having radius a and centred at a distance d above the
reference plane, P , is (a) translating without rotation through an otherwise quiescent fluid, (b)
rotating without translation through an otherwise quiescent fluid, or (c) stationary in a flow
that decays to a uniform shear field in the far field. All cases are shown for the same three
values of the dimensionless permeability, ε2

a , and for a vanishing permeability (solid curves)
when the porous sphere is replaced by a solid sphere.

apply to this problem, where the porous sphere is in proximity to the reference
plane, P .

Figure 2 shows the magnitudes of the dimensionless drag force (black curves, left
axis) and torque about the sphere centre (grey curves, right axis), on a porous sphere
of radius a that is (a) purely translating, (b) purely rotating, and (c) stationary in
a uniform shear field for various values of ε2

a , as a function of the dimensionless
distance, d/a, between the reference plane, P , and the sphere centre. Figure 3 shows
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Figure 3. Variation, with respect to d/a, of the relative (a) translational speed, U/(dγ̇ ), and
(b) rotational speed, 2Ω/γ̇ , for the free motion of a neutrally buoyant porous sphere of radius
a centred a distance d above the reference plane, P , that is convected through a Stokes flow,
which decays to a uniform shear field in the far field. Results are shown for the same three
values of ε2

a shown in figure 2. The curves in (a) represent the transformation between the
translational speed of a porous sphere centred a distance d above the reference plane, P ,
and the translational speed, dγ̇ , a fluid particle would have, located a distance d above the
plane, in a uniform shear field in the absence of the sphere. The curves in (b) represent the
transformation between the rotational speed of that porous sphere and the constant solid-body
rotation, γ̇ /2, that a fluid particle would have in a uniform shear field in the absence of the
sphere.

the relative (a) translational and (b) rotational speeds for the free motion of a
neutrally buoyant porous sphere in a uniform shear field, with the constant shear
rate γ̇ in the far field, as a function of d/a for various values of ε2

a . The results
are plotted for the dimensionless permeabilities of the porous sphere corresponding
to ε2

a = 1.92 × 10−1, 9.696 × 10−2, 1.92 × 10−3, and as ε2
a → 0. These three values

correspond to dimensional hydraulic resistivity values of K ≈ 3.2 × 107, 3.2 × 108,
3.2 × 109 dyn s cm−4, and as K → ∞, respectively, for a viscosity μ = 0.012 dyn s
cm−2 and a sphere radius a = 0.25 μm. Similar values of permeability were considered
by Davis (2001) to analyse the flow due to a porous sphere sedimenting towards a
solid wall and by Damiano et al. (2004a) to analyse the motion of a solid sphere
adjacent to a Brinkman half-space. In figures 2 and 3, the range of d/a shown
corresponds to ln(3/2) � α � ln 10 (0.41 � α � 2.3). This range corresponds to a
dimensionless minimal clearance between the sphere and the reference plane, P , of
0.08 � (d/a) − 1 � 4.05, which, in terms of the dimensional parameters referenced
above, corresponds to a minimal clearance range of 0.02 � d − a � 1.01 μm.

The exact solution presented here is valid arbitrarily close to but not at the limit
where the distance between the sphere and wall vanishes, i.e. for all values of d/a > 1.
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Figure 4. Dimensionless radial velocity profiles in the Stokes-flow region under the south
pole (black curves), and in the spherical Brinkman region along the north–south axis, NS (the
adjoining grey curves), for a porous sphere that is (a) purely translating, (b) purely rotating,
(c) stationary in a Stokes flow that decays to a uniform shear field in the far field, and (d)
neutrally buoyant and freely convected through a Stokes flow that decays to a uniform shear
field in the far field. Results are shown for the same three non-zero values of ǫ2

a shown in
figure 2. Note, the abscissa ranges vary, and the representation of the porous sphere in each
panel is not shown to scale.

A singularity arises in our solution for the particular case of d/a = 1. To treat this
case analytically, we could consider using the tangent-sphere coordinate system (Moon
& Spencer 1961), which O’Neill (1968) employed when he considered a Stokes flow
around a stationary sphere in contact with a plane in a linear shear field. Although
our solution is valid arbitrarily close to but not at the limit where the distance
between the sphere and wall vanishes, it nevertheless becomes computationally time
consuming to compute solutions for values of d/a <∼ 1.01 (as this would require
very high-precision calculations and a retention of a large number of terms in the
infinite series solutions). For such small clearances between the sphere and the plane,
an asymptotic analysis, similar to the approach taken by O’Neill & Stewartson (1967),
would be much more practical. Such an analysis, however, is certainly beyond the
scope of the present study.

Figure 4 shows the dimensionless radial velocity profiles as a function of the
dimensionless distance, z∗/a, of the Stokes flow in the (x, z)-plane at y = 0 under



92 B. C. Roy and E. R. Damiano

0

0.5

1.0

1.5φ

φ = 0

a

φ

φ = π

2.0

2.5

3.0

0 2 4 6
Q

8

 sinh α = 1

0.8

0.6

0.4
0.2

10

Figure 5. Dimensionless pressure variations inside a neutrally buoyant porous sphere along
its interfacial surface, ∂S (�∗/a = 1), and four equally spaced radial positions within the sphere
arising from a Stokes flow generated by the free motion of the sphere in a flow regime that
decays to a uniform shear field in the far field. The dimensionless permeability corresponds to
ε2
a = 1.92 × 10−3 and the minimal clearance between the sphere and the interfacial plane is as

in figure 4.

the ‘south pole’ of the porous sphere (in black) and in the spherical Brinkman region
along the ‘north–south’ axis (in grey) for the case of porous sphere that is (a) purely
translating, (b) purely rotating, (c) stationary in a flow that decays to a uniform shear
field in the far field, and (d) neutrally buoyant and freely convected along a flow that
decays to a uniform shear field in the far field. Results are shown for the same three
non-vanishing values of ε2

a shown in figures 2 and 3. The reference plane, P , is located
at z∗/a = 0. It is clear from the radial velocity profiles that, as the sphere becomes less
permeable, i.e. as ε2

a decreases, the motion of the fluid within the spherical Brinkman
region approaches that of the rigid-body motion of a solid sphere.

Figure 5 shows the dimensionless pressure distribution, Q, in the (x, z)-plane
at y = 0 inside a neutrally buoyant porous sphere along the spherical interfacial
surface, ∂S (�∗/a = 1) and at four equally spaced radial positions within the sphere,
arising from a Stokes flow that decays to a uniform shear field in the far field. These
distributions correspond to a dimensionless permeability corresponding to ε2

a = 0.192.
All calculations in figures 4 and 5 were performed for a minimal clearance of ∼ 1.032 a

(α = ln(3.8) ≈ 1.335). The maximum pressure occurs along the interfacial surface, ∂S,
of the porous sphere, where �∗/a = 1, and decreases towards the interior of the sphere.

12. Applications in areas of engineering, environment, medicine and physiology
The hydrodynamic interactions of porous spheres with confining boundaries in a

shear field is fundamental to the understanding of many phenomena involving the
mechanics of porous agglomerates. The problem arises in numerous industrial and
environmental processes. For example, porous pellets are used extensively in catalytic
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reactors and it has been shown that convective transport in these particles might
enhance effectiveness factors and improve selectivity of chemical reactors (Nir &
Pismen 1977). Porous particles are frequently found in the atmosphere and in other
environmental systems, where they are formed by vapour condensation–coagulation
processes, processes that are affected by the hydrodynamic interactions with air
(Pruppacher & Klett 1978).

Another application of this analysis is in the field of drug delivery and biomedicine.
Inhalation aerosols have recently been developed as effective carriers of therapeutics
for the treatment of respiratory inflammation, cystic fibrosis, and other lung disorders
(Edwards et al. 1997; Tsapis et al. 2002). From figure 2, it is evident that the force
coefficient increases much less rapidly with decreasing distance between a porous
sphere (εa > 0) and a rigid wall than if the sphere were solid (εa = 0). The weaker
hydrodynamic interaction in the case of a porous sphere would, in turn, influence the
attachment rate of a porous sphere with the wall and would therefore also influence
the drug transport properties of porous spheres relative to solid spheres. A major
effort has been underway to develop porous particles of appropriate size that can
prolong the residence of an administered drug in the airways and acini. Results of
this analysis could provide quantitative guidance in this design process.

An example of a biological application of this analysis is in the area of inflammation.
Numerous in vitro studies of leukocyte rolling dynamics in parallel-plate flow
chambers have been undertaken to simulate early stages in the inflammatory response
cascade in post-capillary venules. In these experiments, the cell culture medium,
which is very well-approximated as Newtonian, is steadily perfused through a channel
whose dimensions are large compared to the dimensions of the individual leukocytes
suspended in the medium. Under typical flow-chamber conditions, the shear field
is nearly uniform over length scales relevant to the leukocytes, which are either
freely convected near, or undergoing adhesion-mediated rolling along, the bottom
plate of the flow chamber. Typically, the freely convected motion of the leukocyte
is modelled using the analysis of Goldman et al. (1967), where the leukocyte is
approximated as a rigid smooth neutrally buoyant solid sphere freely convected near
a planar confining boundary in a Stokes flow that decays to a uniform shear field
far away from the leukocyte. The results of the present analysis, however, might
be more appropriate in this context than the results of Goldman et al. (1967) in
the light of the fact that activated leukocytes have a spiculated surface due to the
erectile protrusions of microvilli. Furthermore, the surface of the leukocyte is also
decorated with a glycocalyx, a dilute, macromolecular, carbohydrate-rich thin porous
layer bound to the cell membrane. Since the ruffled surface of an activated leukocyte
becomes spiculated, it is possible that the increased surface area of the cell (relative to
a sphere of the same diameter as the leukocyte) might produce troughs (surrounded
by pillars of microvilli) that are filled with glycocalyx. Collectively, then, the surface
topology (due to microvilli) and the surface-bound glycocalyx might behave as a
porous medium, and the system as a whole, then, might better be approximated
as a solid sphere encased in a porous layer rather than as a solid sphere with a
smooth surface. Although this analysis does not treat the problem of a solid sphere
lined with a thin porous layer, it can, nevertheless, be applicable to that problem
whenever the characteristic exponential decay depth, (μ/K)1/2, into the porous sphere
(which is characteristic of the depth of flow penetration into a porous medium) is
small compared with the thickness of a porous layer encasing a solid sphere. If this
condition is met, then, from a hydrodynamical point of view, there would be little
difference between a sphere that is entirely porous and one that is solid but encased in
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a thin porous layer; in this case, the analysis presented here would be applicable. If the
microvilli are on the order of 300–500 nm in length (Zhao, Chien & Weinbaum 2001)
and the glycocalyx is conservatively 100–200 nm in thickness†, then this structure
could effectively result in a vanishing fluid shear rate on the cell body, provided the
hydraulic resistivity is sufficiently high. Based on the mechanics of red and white blood
cells and the recovery time of the glycocalyx after compression by passing white blood
cells in capillaries (Vink & Duling 1996; Feng & Weinbaum 2000; Damiano & Stace
2002; 2005; Weinbaum et al. 2003), a value of K between 10−11 and 10−10 dyn s cm−4

is a reasonable estimate for the hydraulic resistivity of the endothelial glycocalyx. For
a viscosity, μ = 0.012 dyn s cm−2, corresponding to blood plasma, and a characteristic
length scale of a = 0.5 μm, a value of εa that is between 0.007 and 0.02 might be a
reasonable estimate for the leukocyte glycocalyx on mammalian microvessels.

Yet another application of this analysis is in the area of biophysics. In particular,
ultrasensitive molecular force probe instruments have recently been developed (Wong
2006; Halvorsen 2007; Wong, Heinrich & Evans 2004; Heinrich et al. 2008) that
use a laser trap to apply and measure piconewton forces exerted on a potential-
confined micron-sized spherical glass bead. Typically, the bead is functionalized with
biomolecules, such as immunological adhesion molecules. The reactive substrate
(which might consist of counterligands to the adhesion molecule receptors adsorbed
to the surface of the bead) can be adsorbed to the surface of a cover slip.
Nanometre-sized three-dimensional displacements between the bead and the substrate
are monitored using optical interferometry and recorded using high-speed video
processing. Calibration of these instruments can be achieved through a variety of
techniques (Wong 2006; Halvorsen 2007; Wong et al. 2004; Wong & Halvorsen 2006;
Heinrich et al. 2007), but one involves optically trapping the glass bead within a
viscous shear field induced by moving the fluid-filled chamber relative to the optical
trap (Halvorsen 2007). By precisely measuring the bead displacement within the trap
under the known hydrodynamic drag force, the strength of the optical trap can be
estimated. If the bead is brought into close proximity with the cover slip in this
experiment, a linear superposition of the analyses of Dean & O’Neill (1964) and
Goren & O’Neill (1971) could be used to detail the hydrodynamic interaction of a
rotating functionalized smooth glass bead in a shear field, with the reactive substrate
on the cover slip, as a function of distance between the sphere and the substrate. On
the other hand, if the surface of the glass bead were coated with a polyethylene glycol
(PEG) surface layer and functionalized with adhesion receptors (or counterligands),
the functionalized PEG-coated bead might better be approximated as a solid sphere
encased in a porous layer rather than as a solid sphere with a smooth functionalized
surface. In this case, as before, the analysis presented here might prove useful in
estimating the drag force on the PEG-coated glass bead, so long as the characteristic
decay length, (μ/K)1/2, associated with the PEG layer, is small compared with the
thickness of the PEG layer encasing the glass bead. In this case, the instrument could
be used to characterize the hydrodynamic effects of an adsorbed porous PEG layer on
the functionalized surface of a glass bead that is brought into close proximity with the
reactive substrate on the cover slip. Such a model experimental system could be used
to investigate how a mucopolysaccharide surface layer, such as the surface glycocalyx
on a spheroidal leukocyte or the PEG-coated layer on a spherical drug delivery vesicle,
interferes with, or possibly enhances, adhesion events with a reactive substrate.

† On endothelial cells of mammalian microvessels the glycocalyx is ∼ 500 nm in thickness (Vink
& Duling 1996; Smith et al. 2003; Damiano, Long & Smith 2004b; Long et al. 2004).
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13. Extensions of the present analysis
We are currently extending the analysis to study the motion of a porous sphere

parallel to a Brinkman half-space. Because the governing differential equations and
the boundary and interfacial conditions are linear, the solution to this problem
can be obtained by a linear superposition of the solution presented here with the
solution describing the motion of a solid sphere adjacent to a Brinkman half-space,
as described by Damiano et al. (2004a). Such an analysis would be valid for arbitrary
values of εa in the porous sphere and asymptotically small values of εa in the
Brinkman half-space. With considerably more effort, one could extend the analysis
presented here to study the motion of a porous sphere in a Stokes flow parallel to and
between two parallel planar confining boundaries. Whereas the dependent variables
inside the porous sphere would be expressed in spherical coordinates, the dependent
variables in the Stokes-flow region would be expressed in cylindrical rather than
bispherical coordinates. Although cylindrical and spherical coordinates do not share
a common coordinate surface on which to evaluate the interfacial conditions on the
surface of the porous sphere, the collocation technique described by Ganatos, Pfeffer
& Weinbaum (1980) could be used to enforce the interfacial conditions. A further
extension could then be made to analyse the motion of a porous sphere in a Stokes
flow parallel to and between two parallel Brinkman half-spaces, which are separated
by a finite distance and extend semi-infinitely in opposite directions. Because the
Brinkman equations are separable in cylindrical coordinates, the dependent variables
in the Stokes-flow region and Brinkman half-spaces would be expressed in cylindrical
coordinates such that the interfacial conditions between the Stokes-flow region and
Brinkman half-spaces could be evaluated analytically.

Partial support for this work was contributed by the National Science Foundation,
BES-0093985. We would like to thank Ken Halvorsen for useful discussions and Evan
Evans for planting the seeds of suggestion that we take this problem on.

Appendix A. Spherical coordinate representation of the interfacial velocity and
stress conditions

In terms of scalar cylindrical components, the interfacial velocity and stress-traction
conditions, given by (8.1a,b), are expressed in cylindrical coordinates (r∗, θ, z∗) by
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r = ṽ∗

r , v∗
θ = ṽ∗
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where the left-hand sides of (A2)–(A4) correspond, respectively, to the cylindrical
components (r∗, θ, z∗) of the quantity σ ∗(x∗) · (sin φ er + cos φ ez)/μ.

The coordinate surface � = a/c > 0 corresponds to the locus of points that lie on the
spherical interfacial surface, ∂S. Using the transformation between the dimensionless
cylindrical coordinates (r, θ, z) and spherical coordinates (�, θ, φ), given by (4.1), and
the chain rule of differentiation, the dimensionless counterparts to (A1)–(A4) are
respectively expressed in terms of the dimensionless spherical coordinates as

vr = ṽr , vθ = ṽθ , vz = ṽz, ∀ (θ, φ) ∈ � = a/c, (A5a–c)
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∂ṽr

∂�
− 1

�

∂ṽz

∂φ

)
− sin2 φ

�

∂ṽr
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Since, according to (A5a–c), the three velocity components are continuous across
∂S, and since the θ- and φ-coordinate lines both lie on ∂S, all θ- and φ-derivatives
of the velocity components must also be continuous across ∂S. Thus, the interfacial
conditions associated with the three components of the stress-traction vector, given
by (A6)–(A8), reduce to
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Subtracting the product of sin φ and (A11) from the product of cosφ and (A9)
provides
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Using, again, the transformation between the dimensionless cylindrical coordinates
(r, θ, z) and spherical coordinates (�, θ, φ), given by (4.1), and the chain rule of
differentiation, the dimensionless counterpart to the continuity equation, given by
(3.4), is expressed in terms of the dimensionless spherical coordinates as(
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Evaluating (A13) on each side of ∂S, and taking account of the result that all three
velocity components and all θ- and φ-derivatives of the velocity components are
continuous across ∂S, it is evident that
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∂ṽr

∂�
+ cos φ

∂ṽz
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Subtracting the product of sinφ and (A12) from the product of cosφ and (A14)
provides
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Using (A15) in either of (A12) or (A14) provides
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Finally, using (A15) and (A16) in either (A9) or (A11) establishes the continuity in
the pressure across ∂S. Thus, (A5a–c), (A10), (A15), and (A16) constitute the six
interfacial conditions that satisfy (8.1a,b).

Using the continuity in the r and θ velocity components across ∂S, given by (A5a,b),
and the continuity in the velocity gradients across ∂S, given by (A10) and (A16), we
arrive at the following four conditions, which are independent of θ:
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Substituting the decoupling relations for the pressure and velocity components
associated with the flow in the spherical Brinkman region, given by (3.9) and (3.10),
and in the Stokes-flow region, given by (5.5) and (5.6), into (A17) and (A18), and using
(A5c), we find that the three components of the velocity vector, the three components
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of the stress-traction vector, and the pressure will all be continuous across ∂S if
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Note, that while (A20) and (A21) ensure that (A18), and therefore (A10) and (A16),
are identically satisfied on ∂S, it is the jump condition derived from the continuity
equation evaluated on ∂S, given by (A14), that, along with (A19)–(A21), ensures that
(A15) is identically satisfied on ∂S.

The right-hand sides of (A19)–(A21) can be written, with the aid of (6.6)–(6.9),
in terms of bispherical coordinates (η, ξ = α) evaluated on the spherical interfacial
surface, ∂S. Combining (4.1) and (5.1) and using the chain rule of differentiation, the
derivatives with respect to � that appear in (A20) and (A21) can be expressed in terms
of bispherical coordinates. In particular, the coordinate transformations � = �(η, ξ )
and φ = φ(η, ξ ) are given by
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on the spherical interfacial surface, ∂S, where
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On the other hand, the inverse coordinate transformation, η = η (�, φ), when evaluated
on the interfacial surface, ∂S, is found from (4.1) and (5.1) to be
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where
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Using (A27b) in (A24) and then (A24) in (A20) and (A21) provides the expressions
for the six interfacial conditions on ∂S in terms of spherical coordinates given by
(8.2)–(8.7).
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Appendix B. Recursion relations for the interfacial conditions on the sphere
surface

After substituting Q, w, U0, U2, Q̃, w̃, Ũ0 and Ũ2, given by (6.1)–(6.4) and (6.6)–
(6.9), into (8.2)–(8.7), and then forming the inner product of (8.2) and (8.3) with
P ′

m(cos φ), (8.4) and (8.6) with Pm(cosφ), and (8.5) and (8.7) with P ′′
m(cosφ), we obtain,

after making use of certain recursive and orthogonality properties of the Legendre
polynomials, the following recursion relations for the six interfacial conditions on the
spherical surface, ∂S:
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ψm sinh

(
m + 1

2

)
α

− n(n − 1)

(2n − 1)(2n + 1)

(
1

sinh2α
+ 4 (n − 1)(n − 2)ε2

)
cn−1

sinh2α

+
(n + 1)(n + 2)

(2n + 1)(2n + 3)

(
1

sinh2α
+ 2n

3n + 4

n + 2
ε2

)
cn+1

− 2

2n + 1

{
n In+1/2(1/(ε sinhα)) +

In+3/2(1/(ε sinhα))

ε sinhα

}
en sinhn+1/2α

=

{
4
3
(2 cr − cs), if n = 1

0, if n = 0, 2, 3, . . .,
(B5)

sinhnα

∞∑
m=2

S2mn
χm sinh

(
m + 1

2

)
α

−n(n − 1)(n + 1)(n + 2)

(2n − 1)(2n + 1)
cn−1

−n(n − 1)(n + 1)(n + 2)

(2n + 1)(2n + 3)

(
1

sinh2α
+ 2n(2n + 3)ε2

)
cn+1

−2n(n − 1)(n + 1)(n + 2)

2n + 1

{
n In+1/2(1/(ε sinhα)) +

In+3/2(1/(ε sinhα))

ε sinhα

}
gn sinhn+1/2α

= 0, n = 2, 3, . . . . (B6)

The inner products, Qmn, U0mn
, U2mn

, S0mn
, S2mn

, are defined as

Qmn =

∫ 1

−1

1 − ν2

(coshα + ν)3/2
P ′

m

(
ν coshα + 1

coshα + ν

)
P ′

n(ν) dν,

U0mn
=

∫ 1

−1

1

(coshα + ν)1/2
Pm

(
ν coshα + 1

coshα + ν

)
Pn(ν) dν,

U2mn
=

∫ 1

−1

(1 − ν2)2

(coshα + ν)5/2
P ′′

m

(
ν coshα + 1

coshα + ν

)
P ′′

n (ν) dν,

S0mn
=

∫ 1

−1

(coshα + ν)1/2Pm

(
ν coshα + 1

coshα + ν

)
Pn(ν) dν,

S2mn
=

∫ 1

−1

(1 − ν2)2

(coshα + ν)3/2
P ′′

m

(
ν coshα + 1

coshα + ν

)
P ′′

n (ν) dν,

where the substitution ν = cos φ was made, and the primes denote differentiation of
the Legendre polynomials with respect to their arguments. The quantities ψm, and χm

in (B5) and (B6) are defined as
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ψm =
m(m − 1)(m − 2)

4 (2m − 1)
(cosh 2α − κm sinh 2α) c̃m−2

+

(
m(m − 1)

4(2m − 1)
sinhα(κm coshα − sinhα)+ 1

4
m(m−1) coshα(coshα − κm sinhα)

)
c̃m−1

+
m(m + 1)(2m + 1)

4 (2m − 1)(2m + 3)
c̃m

−
(

(m + 1)(m + 2)

4 (2m + 3)
sinhα (κm coshα + sinh α) + 1

4
(m + 1)(m + 2)

coshα(cosh α + κm sinhα)) c̃m+1

+
(m + 1)(m + 2)(m + 3)

4 (2m + 3)
(cosh 2α + κm sinh 2α) c̃m+2

− m(m − 1)

2 (2m − 1)
(cosh 2α − κm sinh 2α) ẽm−2

+

(
m

2 (2m − 1)
sinhα (κm coshα − sinhα) + m coshα (coshα − κm sinhα)

)
ẽm−1

−
(

4 m3 + 6 m2 − 1

2 (2m − 1)(2m + 3)
+ 1

2
(2m + 1) cosh2α + 1

2
κm sinhα coshα

)
ẽm

+

(
m + 1

2 (2m + 3)
sinhα (κm coshα + sinh α) + (m + 1) cosh α (coshα + κm sinhα)

)
ẽm+1

− (m + 1)(m + 2)

2 (2m + 3)
(cosh 2α + κm sinh 2α) ẽm+2

−m(m − 1)(m − 2)

4 (2m − 1)
(κm cosh 2α − sinh 2α) d̃m−2

+

(
m(m − 1)

4 (2m − 1)
sinhα(coshα−κm sinhα)+ 1

4
m(m−1) coshα(κm coshα − sinhα)

)
d̃m−1

+
m(m + 1)(2m + 1)

4 (2m − 1)(2m + 3)
κm d̃m

−
(

(m + 1)(m + 2)

4 (2m + 3)
sinhα (coshα + κm sinhα)

+1
4
(m + 1)(m + 2) coshα (κm coshα + sinh α)

)
d̃m+1

+
(m + 1)(m + 2)(m + 3)

4 (2m + 3)
(κm cosh 2α + sinh 2α) d̃m+2

− m(m − 1)

2 (2m − 1)
(κm cosh 2α − sinh 2α) f̃m−2

+

(
m

2 (2m − 1)
sinhα (coshα − κm sinhα) + m coshα (κm coshα − sinhα)

)
f̃m−1

−
(

4 m3 + 6 m2 − 1

2 (2m − 1)(2m + 3)
κm + 1

2
(2m + 1)κm cosh2α + 1

2
sinhα coshα

)
f̃m

+

(
m + 1

2 (2m + 3)
sinhα (coshα + κm sinhα) + (m + 1) cosh α (κm coshα + sinh α)

)
f̃m+1

− (m + 1)(m + 2)

2 (2m + 3)
(κm cosh 2α + sinh 2α) f̃m+2,
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χm =
m − 2

4 (2m − 1)
(cosh 2α − κm sinh 2α) c̃m−2

− 1

4 (2m − 1)
(m + (m − 1) (cosh 2α − κm sinh 2α)) c̃m−1

+
3 (2m + 1)

4 (2m − 1)(2m + 3)
c̃m +

1

4 (2m + 3)
((m + 1) + (m + 2) (cosh 2α + κm sinh 2α)) c̃m+1

− m + 3

4 (2m + 3)
(cosh 2α + κm sinh 2α)c̃m+2 − (m − 2)(m − 3)

2 (2m − 1)
(cosh 2α − κm sinh 2α) g̃m−2

+
m − 2

4 (2m − 1)
((4m − 3) (cosh 2α − κm sinh 2α) − (4m − 1)) g̃m−1

−
(

16 m3 + 24 m2 − 34 m − 21

4 (2m − 1)(2m + 3)
+ 1

4
(2m + 1) cosh 2α + 1

4
κm sinh 2α coshα

)
g̃m

+

(
m + 3

4 (2m + 3)
(4m + 7) (cosh 2α + κm sinh 2α) + (4m + 5)

)
g̃m+1

− (m + 3)(m + 4)

2 (2m + 3)
(cosh 2α + κm sinh 2α)g̃m+2 +

m − 2

4 (2m − 1)
(κm cosh 2α − sinh 2α) d̃m−2

− 1

4 (2m − 1)
(κmm + (m − 1) (κm cosh 2α − sinh 2α)) d̃m−1 +

3 (2m + 1)

4 (2m − 1)(2m + 3)
κm d̃m

+
1

4 (2m + 3)
(κm(m + 1) + (m + 2) (κm cosh 2α + sinh 2α)) d̃m+1

− m + 3

4 (2m + 3)
(κm cosh 2α + sinh 2α) d̃m+2

− (m − 2)(m − 3)

2 (2m − 1)
(κm cosh 2α − sinh 2α) h̃m−2

+
m − 2

4 (2m − 1)
(κm(4m − 1) + (4m − 3) (κm cosh 2α − sinh 2α)) h̃m−1

−
(

16 m3 + 24 m2 − 34m − 21

4 (2m − 1)(2m + 3)
κm + 1

4
(2m + 1)κm cosh 2α + 1

4
sinh 2α

)
h̃m

+
m + 3

4 (2m + 3)
((4m + 7) (κm cosh 2α + sinh 2α) + κm(4m + 5)) h̃m+1

− (m + 3)(m + 4)

2 (2m + 3)
(κm cosh 2α + sinh 2α) h̃m+2,

where κm = coth
(
m + 1

2

)
α.
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